The set of all real numbers x for which $x^2 - |x+2| + x > 0$, A) $(-\infty, -2) \cup (2, \infty)$ B) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ C) $(-\infty, -1) \cup (1, \infty)$ D) $(\sqrt{2}, \infty)$ **Correct Answer: B** Solution: Case I: When $x+2 \ge 0$ i.e. $x \ge -2$, Then given inequality becomes $x^2-(x+2)+x>0$ $X^2-2>0 \Rightarrow |x|>\sqrt{2}$ $x < -\sqrt{2}$ or $x > \sqrt{2}$ x≥-2, As therefore, in this case the part of the solution set is $[-2, -\sqrt{2}) \cup (\sqrt{2}, \infty).$ Case II: When $x+2 \le 0$ i.e. $x \leq -2$, Then given inequality becomes $X^{2}+(x+2)+x>0$ $\Rightarrow x^2 + 2x + 2 > 0$ \Rightarrow (x+1)²+1>0, which is true for all real x Hence, the part of the solution set in this case is $(-\infty, -2]$. Combining the two cases, the solution set is $(-\infty, -2) \cup ([-2, -\sqrt{2}] \cup (\sqrt{2}, \infty))$

 $= (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty).$